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1SIGNIFICANCE AND EXPLANATION
In Part I the linear Boltzmann equation was solved. In this second

part the full non-linear Boltzmann equation with a soft potential is solved,

provided that the initial configuration of particles is close to equilibrium,

so that the problem is nearly linear.
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I
THE BOLTZMANN EQUATION WITH A SOFT POTENTIAL.

PART I: NONLINEAR, SPATIALLY-PERIODIC

Russel Caflisch

I Introduction

The linear Boltzmann equation with a soft intermolecular potential was.

solved globally in time in Part I [1], if the initial density is a satial>

homogeneous perturbation of a global Maxwellian. Moreover it was urov. t

this perturbation decays in f2 or sup norm like e- t , with ', >

1 > B > 0, if it is initially bounded by a Maxwellian. We will refer to

formulas or results from Part I by preceeding their numbers with an "I" as i:.

(I1.7).

In this paper we find the same result even if the initial perturbation

is spatially dependent in the cube with periodic boundary conditions. In

addition we can solve the spatially periodic nonlinear problem globally in

time if the initial perturbation is small enough, and we find that the solu-

tion decays to the Maxwellian equilibrium.

The linear, spatially-dependent Boltzmann equation is

(1.1) f + - - f + Lf = 0
at ax

(1.2) f(t = 0) = f0 E N

where f0 and f = f(t, x, C) are periodic in x E T3 = [0, 2r] 3 , t >0,

c R 3 , and N = {g(x, f): S I *(_) g(x, C) d& dx = 0 for P(E) = 1,
3 3

T R
2Ci or C21. The requirement that f0 E N just weans that we have chosen the

right Maxwellian equilibrium to perturb about, so that it has the total mass,

momentum, and energy. Our first result, Theorem 2.1, is that the solution of

this problem decays like e

As in Part I we remove the null space of L - v + K by adding on a

finite rank operator. N(L) is spanned by the functions '. (E) defined in

etSponsored by the United States Army under Contract No. DAAG29-75-C-0024. This
material in based upon work supported by the National Science Foundation under
Grant Nos. MCS78-09525 and 14CS76-07039.
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I (12.14). We define the modified linear operator

ti.3) L= V+ K

(1.4) K + P

4
(1.5) P = I ) . ,

i=0

where now the inner product is the 2(x, C) inner product. Since . are- - 1

independent of x and Pf0 = 0, the linear problem (1.1), (1.2) is not

changed if we replace L by L. Since the nonlinearity vr of the Boltzmant,

equation is also perpendicular to Wi' this replacement of L by L does

not affect the nonlinear problem either.

The relevant norms, which are defined in Section 2, are 2 norms of f

2
and its spatial derivatives, then C or sup over . The derivatives are

introduced in order to be able to use the Sobolev inequality when estimating

the nonlinear terms. For consistency they are also included in the linear theory

of Sections 2 and 3 where they are not really needed. The estimates on K given

in Part I all have analogues which are presented in Section 2.

Just as in Part I the velocities are cut off by defining the characteristic

function 1w
(1.6) Xw( )

> w

and introducing

(1.7) B = + )+ X
w - xw

as an operator on 2 (E < w, x E T 3). The only new twist in the spatially

dependent problem comes in the analysis of the semigroup e -tBw, given in

Section 3. This employs spectral perturbation theory [41 and an argument given

by Ukai (5]. The rest of the proof of Theorem 2.1 goes exactly as in Part I.

-2-



I
The nonlinear Boltzmann equation is

(tf + f + Lf \t(f, f)at - ax

(1.9) f(t = 0) = fot N

where f and f0  are periodic in x. If f0 is sufficiently small, this

problem can be solved for all time and the solution f(t) decays to 0, as

stated in Theorem 4.1 in Section 4. The estimates on 7 in Section ', state

that if f is small, vr(f, f) is even smaller. So this problem is just a

perturbation of the linear problem, which also keeps its solution small. The

solution is found by an iterative procedure described in Section 7, after the

iteration equation is analyzed in Section 6.

References to previous work and more explanation of the Boltzmann equation

are found in Part I. I am very grateful to Harold Grad, who suggested this

problem, and to Percy Deift, George Papanicolaon and Robert Turner for a number

of helpful discussions. This work was performed at the Courant Institute and

the Mathematics Research Center; I am happy to acknowledge their support.

-3-
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II The Linear Equation

We will use an £2 Sobolev norm over spacc al'nj , as .

both x and C, which are sup or C
2  

norm over -, f t

space. If the function is not spatially dependent these x:, ,.-. .

exactly those used in Part I and we will use the same rotatict..

Definition. Let f = f(x, _ be riodic >x...

4

(2.1) 11f( ' ")
11 
H (x) s (f 

!
V
s  

f(x, s): dx1
4 s=l T3T

(2.2) ifil 2lf( _ .)1124(x )  1

3~ Iff( ) 4 (x)R3

(2.3) fil at = sup (1 + )r e f )l 4(x )(23)Il~lc,r I (, i x

(2.4) 11 fl1 = 11 fC 0ci ,0

(2.5) 1I fII = 11 fti0,0

Denote H = {f(x, 1): ifil < . and f periodic in x!. As in Part 1,

will always refer to exponential decay and r to algebraic deocav in .

y ever appears in the subscript of a norm it is in the alcebraic decav :art.

The algebraic decay is used in the following proofs, but nct in t,., stat:'r.

3
of the theorems. The Sobolev inequality in T states that

(2.6) 11fgIH4(x) < c 1Ifi)H4(x) 11g]I H (H (x)- H C) H x)

The main result for the linear problem is the following:

Theorem 2.1

<1
Let 0 < a < !, and let f0 E N n H . Then there is a unique solutien cz

the linear Boltzmann equation (1.1) and (1.2) in H . It decays in time likc

-4-
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_;,t
f

(2.7) II f(t)( 1 < c I f 11

44

(2.8) IIf(t)l < clif 0

(2.9) 11 f(t)11 < c f 0I

2 1-8In which 8 = 2 and X = (1 - 2) O - , for any

constant c depends on c.

The estimates on K are exactly as before. We first note tit,-i

is independent of x,

(2.10) JIKf( , )H4(x) < K(If(, ) (x)
H4 ()H4(x

Using that inequality we easily show

Proposition 2.2

(2.11) I1 Kf ,y < c 11 f+i

(2.12) IIKf1I ,r+ +2  < c I1fil , r

(2.13) 11KfiI < c 1ifil_

These estimates and Theorem 3.1 of the next section are used to prove

Theorem 2.1 just as in Part I. In the proof we solve two types of equations:

(2.14) aL g ,wg=g on E <w
at

Kan
in which Bw  +V+X K, and

w - x w

(2.15) h + h + vh = h
at ax 1

We rewrite these as

-tB t -(t-s)B

(2.16) g(x, t, ) = e w g0 (x, )+ f e gl(x, s, _ s

0

I-5-
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(2.17) hcx, t, _) -t\(zi (x - tk, ) + - (t-s)V hl(X- (t-s)

Now take the H 4(x) norm and use Theorem 3.1 to estimate

(2.18) hg1l H (x )  (t, ) e
-  tv (w

) 1g 0 11H (x)

(2 .19 ) 11 h H (x ) (t , 
<  e

- t  (
&
)  1h0 11H (x) ( )

+ o e - ( t - s ) 1( )  11 H 4  (s, ) as
0 4

These are exactly like the equations treated in Sections 9-12 of Part I.

-6-
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II: Stp,,ctral Theory for the Cutoff linear Operator

Consider the transport and collision operator

(3.1) =+ - .x

on I (x, I). Recall that K is the modification of K defined in (1.4).

We shall show that, after restriction to a bounded z-et of velocities, this

operator qenerattrs a strictly contracting semi-ciroup. Our main result is

Theorem 3.1

- 2
Consider the operator B -- + v(,) + ' K on f fx, E : '.

w x w

i) -8 is maximally dissipative
w

ii) Let 0 1. If w is sufficiently large,

-tB

(3.2) Ile-t wil e e
- t

11V
(w )

The theorem is proved by looking at the Fourier transform of B . Thew

modification of K only affects the 0 Fourier variable, so that

(3.3) Bwk ik + v + K k 0

(-.4) B = v +W,0

where k a vector with integer components. Each B is an operator on

2
X (2 - w) and satisfies

(3.5) Re(B f, f) > 0

The following results are analogous to Theorem 7.1 and Proposition 7.2 in

Part I. An important point is that the statements are independent of k.

Proposition 3.2

Let 0 < V < 1. For w sufficiently large, B has spectrum whose
w,k

real part is bigger than vv(w), i.e.

-7-
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(3.6) (w, k Rw

Moreover the sufficient size of w is independent of k.

Proposition 3.3

Let f be an eigenfunction of B w~kwith eigenvalu, s that

Re XA vIv(w). Then f is rap~idly decreasing in ,, i.e.

(3.7) sup (1 +F~)M fU-I _ - c f( 
2 

dr

in which the constants c mare independent of ,, w, f, k.

The following lemma will be used in the proof of Propositioi

Lemmna 3.4

2 3
Let fe c 0 F R, and k R w ith k= 1. Then

(3.8) lrn sup f f 2 d) 0
E-0 e,k=l A

in which A Ik 81 <e

Proof of Proposition 3.3

Rewrite the eigen-equation as X wKf = {-(v - N) I ik _ f. Therefore

Kf( )j > UI - pi) \)(&) jf( f. Then proceed as in Proposition 17.2 'usin.1 t:'

inequality and the estimates (16.1) and (16.2).

Proof of Proposition 3.2

If k = 0, the proposition is exactly Theorem 17.1. So we consicier on'..

k #0

a) First we show that the values A E: a(B ) with Re k < ,,w) arcw ,k

necessarily discrete eigenvalues with finite multiplicity. (In fact we could

put here v(w) instead of jv(w)). The proof is exactly as in (2] using the

methods of [4].

-8-
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The Fredholm set of (-ik s -

Since X K is compact, then this is also t'e
w

Therefore the set S {A Re (w) is contai.' :r 1

of the Fredholm s,_t of B This set n : .
w,k

which are in the resolvent set of B k  because

nul (B -)= def (B - =0. Since thernul y
w, k w, k

constant in connected components of the Frtdc 
.  

. ..,

points, nul (Bw, - ) = def (Bw - ) = in S ex. ,it at

These points are isolated eigenvalues of finite mult:i licit,'. ,"

of S is in the resolvent set.

b) Now suppose the theorem is not true, so that ther r at,

w , ,k with Re oa(B ) .uv(w) and k
n n -n n w ,k ' n n - n

n -n

each A is an eigenvalue for B with eiq(enfuncti'onn w ,k
n -n

(3.9) B f = f and if fl = 1
wnk n n n n

n -n

Write A = P + i e . Then just as in the proof of Theorem I-.., 2
n n n

Kf - g, after restricting to a subsequence, with the result thatn

lim (-v(C) + ik •C + i e ) f = g. As before we can divide by the facto T
-n - n n

the right to obtain

(3.10) f - lim f = limn -v( ) + ik • + i
n
-
l n- -n -n n

Denote the function inside the last limit in (3.10) as gn"

Next we show that lim k n . Suppose to the contrary it was andn

restrict to a subsequence with lim k nn

-9-
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hoose as in Lemma 3.4, -such that

(V.ii) s, 2 <
,k=l A

in which A = : k + . choose n large enough that
k

i2

and !f - qn •. We will obtain a contradiction by integrating f- ocr

the two sets A = ';k + ! k
t

and A
c = R3

- A . Denote
n - -n n n n n

= k /k . Then A = k + 4" 'k 1/, }. Since 1/,5 • .
n -n n n n n n n n

(3.12) f 2 di_
A
n

In A
c

q n< /k and
nt n n

ff2 dE g 2 d~r +
A 2
n A

n

(3.13)
2

1tg2 + c

Adding (3.12) and (3.13) together results in

(3.14) lfl,
2  

< 2E + c 1qg1l
2

By choosing E small enough we get a contradiction since 11fil = 1, which

shows that lim k <
n

Similarly - must stay bounded, and we get k - k and 6 - 6 after. n -n n

restricting to a subsequence. Since k is on the integral lattice,
-n

k n= k for n large enough and so k y( 0. Take the limit n in the

eigen-equation (3.9) again and find that

(3.15) -ik • Ef + vf + Kf = ief.

Integrate this against f; the real part is (vf + Kf, f) = 0. Since

-10-
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7

K 4 " is a positive semi-definite elf-aiJ int

which means that

(3.1$) f(r) =:0 + *

a, + -

Since (' + K) f = 0, then -(k • f If, which Imili, tSr k

But this is a contradiction, since k # 0. This concludes th- roer o

Proposition 3.2.

Proof of Theorem 3.1

i) Since B is densely defined on f2 (x ,w) indw

(3.17) Re(B f, f) = Re((v + X K) f, f) 3
w w -

then B is maximally dissipative.w

ii) This proof is exactly that of theorem 1.1 in [5], except that we

have removed the null space by changing the operator K to K. Denote

A- = 
+  

(), K K, and B = A + K , operators onw ix w w w w w= /2

£w = (x, w) w}. We outline the proof in the following steps

a) K ( - A ) is compact on £2 (, x), for Re i < uu(w)w w _ __

b) o(B ) c fX Re A < jiv(w)} for w sufficiently large.

From (a), K is A -compact so that c (B) = o (A ) = {1 : Re X - v(w) 14].w w e w e w -

In {Re X < v(w)}, A is Fredholm and so is B . Moreover if Re A < 0, then
w w

A is in the resolvent set p(B w). Therefore {Re X < v(w)) c ;(B w), except for

a discrete set of points which are eigenvalues of B . But Proposition 3.2w

shows that B has no eigenvalues to the left of Re = lv(w) for w largew

enough.

c) li sup IlK (A -A)! -*0

TI
-o ReX<)eJ(w) w w

-h1

-ii- 3

'~ i~'t| A.
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d Denote Z(X) - A i (I - K ( - K w - -w ww w w

- B i = ( - A ) + Z(X). Denotew w

(3.18) Z (t) = 2f f e-'t Z(fi + iy) dy

If 6 < ;<v(w), Z (t) converges absolutely in the weak topology an

where c is independent of t and 1.

-tB -tA
e) w = e w + -t zt

- tA

Choose d = Uv(w). Since lie W'II < e
- t
V(w), the result (ii) in Theorem .1

follows.

-12-
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IV The Nonlinear Equation

Theorem 4.1

1
Let 0 < a < 1. There is a positive constant , suc: .

lIf 0Il < 6, then the nonlinear Boltzmann equation (1.8) and (1.'

solution in H , which satisfies

(4.1) Ilf(t) 1 < c 10f 1i e

(4.2) )lf(t)ll < c Ilf 011 e

(4.3) llf(t)I < C f 1

in which 8 2 and X = (I - 2) 8 -) f any

in 2 + Y - ~ 2 -- foBn

constant c depends on E.

This 8 and X are chosen just as in the linear problem, but tr~x

correspond to y and a rather than a.
2

-13-



V Estimates on T

The nonlinearity 7(f, g) was analyzed by Grad in the Appendix of (3].

We decompose I as (this is slightly different from [3])

(5.1) F(f, g) = rl(f, g) + F,(f, g)

1

t5.2) v T (f, g) = - (f gi + g f) w -T
1 2~ 1 1 1 -

(5.3) F 2 (f, g) I- f (f' g' + f g 
1

) 
'1/2 cb

2 1~

(5.4) cL = B(, V) de d_ ,

in which fj = f(&') as given by (2.4) in Part I, etc. The following

estimates are analogous to those proved by Grad.

Proposition 5.1

(5.5) lv Cl(f g)ll ,r < c(lIflI 1,r- q 1lgI1 + Ilfi -gyl

(5.6) IN r 2(f, g)Ilar < c llfil ,r-ki MglIo,r-l Y

Proof

a) By the symmetry in F1 it suffices to consiaer v F l(f, g) =

I 
f
f g1  1/2 dQ. First take the H x) norm and use the Sobolev inequality

24

(2.6). Since the integral does not involve , we can factor the f term

out to get

(5.7) IN ri (f, g) 4  1 fil 1_ fll ig 1  1/2 B( , V) de d_11 HI (x) c x) 2 H-41

Replace the first factor using

2

(5.8) lfl4i () W ) < (1 + )-r e-a Ilfil

-14-
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T"., us< th, dfinit 11 G.6) of -. the bound k .. ,l

t. Se).watz inequality to the intqral over 1 to obtjl"

1/-1

dI <, c je '*--cl- H: I x) "1 - 3 - i- -1

R

or'ining (1,.8) and (5.9) results in

(5. 10) li , F 1l < c Iftl 11g1l
0, r+Y

from which (5.5) follows.

b) Again we only estimate

r 1 f f! g, W 1/2 dS2
21 2 1

(5.11) f f f(E + V) g(& + w) 1/2 v + w)

R
3 

w+v

R3 ~ ~ Qtv, w) dd
- 2 dw dv,

v

in which w and v are defined by (12.10) and (12.11). We continue exactly

as Grad did. Resolve into components i and C2 parallel and

perpendicular to v respectively, so that

(5.12) 1/2( + v + w) /2 (v + W 1/2(w +

and, using also the Sobolev inequality,

if(L + v) g( + w) 1
H 4(x)

<_ c(l + I + vj ) - r 
(1 + 1 

+ 
wl

) - r 
exp {- [ + + +

1 tf z ,r 1ga1 ,r

-15-



(5.13) < c(l + -r+l (I + 1 (i + -1fli 1gi(1,+1 '2:. r

After applying the H 4(x) norm to v r21 we can use (5.13) in estimati!.

(5.11) to find

21 211V r 21 11 H W < c(l + 6) r +l  e- a & 2 11fli a Ir11gll ,, r
H4(x) -- ,r c,

(5.14)

-1 -1 1/2 1/2Qvw
f f ( + -1( + E)wi(v + W (w +  

2 2 dw d%

R3 w_v v

Denote the integral on the right by I. According to Proposition 5.2 fror

Part I,

(5.15) 1v f 1/2 (w +  
2
)
Q(v, w) dv < c(l + E + v) - (Y+I )

v 21 2wlv

so that

(5.16) I < f (1 + & )-(a + ( 1 + E2 + v)-(Y+l) 1 w/2 (v + _ dv
R
3

It is easy to see that

- ,(Y+l) 1/4 -(Y+1)
(5.17) (1 + 2 + v) W (v + - ) < c(l + )

Combine this with the estimate

(5.18) f- (1 + Ci )-
1 (1 + &2 ) - 1i /4( _1+ v) dv < c(l + C)

which comes (almost exactly) from the Appendix of 13j, to obtain

(5.19) I < c(Q + )-(Y+2)

Using this in (5.14), we find

(5.20) v 2 < c(1 + )-r+Yl) e-2 fil , r g , r

H 1x)

-16- LI



The result (5.6) follows after replacing r with r + Y + 1, ~i~:x

taking sup over_
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1 2t n:one,, enous Iteration Ecuation

Consider the quation

(C'.1) -~f + f +Lf ( ,

f(t J ) = f 0  N H

which is an inhomogeneous version of the iteration equations th~at will b,:-

solved in the next section. Pick and 6 as in Theorem 4.1, i.e.

corresponding to a/2. For f 0,h 1 1h we require

(6-.4) sup {01h (t~ll, , e ll 1h. (t)ll 11 e h. (t)l 11 < b. i = 1, 2,
t

in which the sup is taken ever time as wt-11 as over the three components.

Proposition 6.1

The solution f of (6.1) and (6.2) satisfies

max (11f(t)Il e X II1 f (t) 0 , e llB 1f (t)1
c,

(C.5)
< c(b 0+ b Ib2

We will employ two useful inequ- Ii':ies. The first is a special case of

an interpolation theorem for the a, r - norms.

Lemma 6. 2

(6.6) 11 fil <i' 2 11fl1 2 1 l /

Proof For any &0 > 0,



I

( u2 2 20su2 " - . I I
11 i >u

'- 2 2T'TI

1)7.T)_< jSflJIi fl / +1e1iffl >

C 2

2 1- 1f

iLy .=noosing 11 = l f /11 fil

Lc.nma 6.3

For < < ,

(6.8) f exp {- t - s) - A s} ds < c(1 + t) e
-

x
t

0

whe re c depends on

Proof

Just use the estimate (t - s) - (t - s ) > c { (t/2) 2 (s - t/2)
2

the integral.

Proof of Proposition 6.1

a) First we infer from Lemma 6.2 and (6.4) that

1 8

(6.9) 1lb. (t)) 1 c b. e2
± o/2- i

According to Proposition 6.1 and (6.4),

(6.10) li l(h, h2) (t)II < c b b e-At
1 2 C1- 1 2

(6.11) Iv r 2 (hl, h2) (t) +I < c b I b2

(6.12) iuv r(h1 , h2 ) (t) 1/ 2 < c b1 b2 e-At

-19-
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Note that the - - norm decays, while the a - norm does net. -:,

the reason for using the a/2 and will be needed in the next stir-,

b) Using the estimates (2.7) and (2.8) for the linear prohl,

(6.12) and Lemma 6.3, we find that (recall that zorresFonds t -

et t
-At 't (t-s)

max {I(ft) 11, I1f(t) 11 < c e f 0I/2 +c e

_Att

-Xt I e-X(t-s) s'
(6.13) <ce b0 + c e dsbI b 2

0

<c e (b + b b)
-0 1 2

c) To Pctimate I1f(t)II we go back and redo the linear estimatC. A

in (2.19) we estimate

IlfWt, <)I( 4(x)_ e
- t

v(E) (If0  +

44 (x)

(6.14)

t e-l(t-s)\(E) (11 KfIH4(W)(s, ) + liv i4 (s, l_)) ds

0 4  4

Using the argument in Section 12 of Part I, we find that

su eOC2 e- (t-s)v( 11(fiH) X (s, )sup {e e N{ Kt x)H

4

(6.15) -sy/2 2 -3/2

< C(l + t -e 11f(s)1 + (1 + 0) if(s) Ii

for any 0* Choose 0 large enough and use (6.13) to obtain

t 2
f sup e (t-S)v( ) IIKfI HCx) (s, C)l ds

C; 4
(6.16) 1

I su 11 ffs + c(b + b b 1

02 _t 0 1 20<,<t
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The last term in (6.14) is split irntc ;ej' : art K .

(cf. (5.1)). The reason for going back to thc lintar r

estimate the term containing 72:

sup e C&2e-tS'( 1 - 2 1 (S, '

H 4. A

(6.17) < sup{ (1 + ~I/( 5

< c(1+ t -s)- t b

where we used Lemma 112.1 and (6.11) in the last ste-:.

integrable over time.

t 2

6(6.18) fsup {eac e '~ (t*, (E IN -I
0 HX

The term containing is easily estt.rstec.

t 2
f sup {ecl e- (t-s) () 1'H )
0 r

(6.19)
t

fl%71 d

because of (6.10).

The three terms estimated in (.E 6.1S) an (6. Ius the :i~

term in (6.14) are just what appear or, the riznt side of (6.14) after

multiplying by eo' -and takino su-.' over V. Te result is that

(6.20) I1 f W)II <C (b + b +-su

from which it follows that
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JC!.IUO a h<:roof of t%,, P2osltlo-..
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-i i z - I 1 ( , ~-

Z(7.) f ti n n. f

_n ~ ~ X r, il ' ,dn;:.

t S w(-d ossa a of sn n D;ett t -a;. i ,:,o

7. 3) max ii f I ,' 1 f '1 1t

n-3 in addition that b b in order to Oet the induction start-i.

According to Pro osition (6.1), tho estimate (7.3) will also i>< tru. for

c(L + b2). This can be fulfilled as lono as P is small

and we can even make b as small as desired.

Next we estimate the difference h = f - f
n

. For h we hay-
n+l n+l 1 ~

tt. oquation

P tt -- h +L. h V '(h'., i , P

c't n+l -' x n+1 n+ - n fn n-l

hete H[hi, = sup h{)Ih(t)I , e (t)[ , e Ilh(t)C 1. Then h < 21
t

from (7.3), and using i-oposition 6.1 again, I[Ih l(t) :l < 2ci .
n+1

After choosing b < we find that Z (Hhn 1 t)l[ < and it fellows that
n=2

(7.5) f -- f
n

in the norm ml . Moreover f solves equations (1.8) and (1.9). This

concludes the proof of Theorem 4.1.
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